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A weakly nonlinear analysis is used to study the initial evolution of the Rayleigh–
Taylor instability of two superposed miscible layers of viscous fluid between imper-
meable and traction-free planes in a field of gravity. Analytical solutions are obtained
to second order in the small amplitude of the initial perturbation of the interface,
which consists of either rolls or squares or hexagons with a horizontal wavenumber
k. The solutions are valid for arbitrary values of k, the viscosity ratio (upper/lower)
γ, and the depth ratio r, but are presented assuming that k = kmax(γ, r), where kmax is
the most unstable wavenumber predicted by the linear theory. For all planforms, the
direction of spouting (superexponential growth of interfacial extrema) is determined
by the balance between the tendency of the spouts to penetrate the less viscous layer,
and a much stronger tendency to penetrate the thicker layer. When these tendencies
are opposed (i.e. when γ > 1 with r > 1), the spouts change direction at a critical
value of r = rc(γ). Hexagons with spouts at their centres are the preferred planform
for nearly all values of γ and r, followed closely by squares; the most slowly growing
planform is hexagons with spouts at corners. Planform selectivity is strongest when
γ > 10 and r > γ1/3. Application of the results to salt domes in Germany and Iran
show that these correspond to points (γ, r) below the critical curve r = rc(γ), indicat-
ing that the domes developed from interfacial extrema having subexponential growth
rates.

1. Introduction
When a dense fluid lies above a lighter in a field of gravity, the interface between

them is inherently unstable to small perturbations. This is the classic form of the
so-called Rayleigh–Taylor (henceforth RT) instability, first studied theoretically by
Rayleigh (1883). Later, Taylor (1950) showed that acceleration of the fluid interface
produces the same effect as gravity, whence the compound name by which this
instability is now known. Chandresekhar (1961) reviewed the linear theory of RT
instability for two infinite fluids with equal kinematic viscosities separated by an
interface with surface tension. The instability has subsequently been investigated in
a wide variety of systems and contexts: inviscid and viscous fluids, miscible and
immiscible fluids, infinite and bounded domains, infinitesimal and finite amplitude,
and two- and three-dimensional flow.

This study focuses on the case of highly viscous fluids in which the effects of inertia
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can be neglected. The principal motivation is geophysical: the RT instability has been
invoked as a simple model for such diverse phenomena as salt domes (Nettleton 1934),
mantled gneiss domes (Fletcher 1972), island-arc volcanism (Marsh & Carmichael
1974), the formation of mantle plumes (Whitehead & Luther 1975), mid-ocean ridge
volcanism (Whitehead 1986), subduction of oceanic lithosphere (Canright & Morris
1993), and instability of continental lithosphere beneath mountain belts (Houseman
& Molnar 1997).

The RT instability of very viscous fluids has been studied extensively using ana-
lytical, numerical, and experimental methods. Most of the extant analytical studies
are limited to linear stability analysis. The earliest such studies considered simple
two-layer models (Daneš 1964; Selig 1965), and were later extended to multiple lay-
ers and different boundary conditions; for reviews and bibliographies, see Ramberg
(1981) and Johnson & Fletcher (1994). By contrast, there have been few analytical
studies in the nonlinear regime. Whitehead & Luther (1975), following a suggestion of
Daneš (1964), examined the effect of nonlinear convection of the interface during the
initial stages of the instability. They concluded that a hexagonal planform should be
preferred, and attempted to determine the direction of ‘spouting’ (superexponential
growth of interfacial extrema) in a two-layer system. However, their theory neglected
the nonlinearities associated with the matching conditions at the interface. Another
approach has been to simplify the governing equations by assuming that the dominant
wavelength greatly exceeds the layer thickness, due either to surface tension (Babchin
et al. 1983; Yiantsios & Higgins 1989; Fermigier et al. 1992) or to an extreme viscosity
contrast (Canright & Morris 1993).

Numerical techniques such as finite elements (Woidt 1978; Schmeling 1987; House-
man & Molnar 1997) and the boundary integral method (Newhouse & Pozrikides
1990) have also been used to study the large-amplitude evolution of the viscous
RT instability. However, all numerical approaches to date have been limited to
two-dimensional and axisymmetric geometries, and with rare exceptions (Schmeling
1987; Houseman & Molnar 1997) have emphasized the qualitative morphology of
the instability rather than quantitative scaling laws.

Experimental work on the viscous RT instability includes the study of Whitehead
& Luther (1975), who performed experiments under normal gravity and showed
that the morphology of the spouts depends on the viscosity contrast. An alternative
approach has been to use extremely viscous fluids (e.g. silicone putties) and to
enhance the effective gravity by spinning in a centrifuge (e.g., Ramberg 1981; Jackson
& Talbot 1989). In general, laboratory experiments have proven to be powerful tools
for studying the morphology of the RT instability, but have yielded few quantitative
results.

In summary, despite extensive previous study, quantitative understanding of the
viscous RT instability remains limited. This study investigates two questions that
remain unresolved: in what direction (up or down) does spouting occur in a system
of two layers with arbitrary thicknesses and viscosities? And in the same system,
what horizontal planform is preferred? Answers to these questions are provided by
an analytical weakly nonlinear solution for the early evolution of the instability that is
valid for arbitrary values of the wavelength, the viscosity ratio, and the layer thickness
ratio. The results are then applied to salt dome fields in Germany and Iran. Readers
who wish to skip the mathematical details will find a self-contained summary of the
model and conclusions in § 7.
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Figure 1. Definition sketch of the model. Two layers of highly viscous fluid are confined between
impermeable and traction-free planes. The lower layer has thickness h1, viscosity µ1, and density ρ1,
and the upper layer has thickness h2 ≡ rh1 (r > 1), viscosity µ2 ≡ γµ1, and density ρ1 + ∆ρ. The
deformation of the interface (initially at z = 0) is η(x, y, t), and surface tension between the fluids is
neglected.

2. Model definition and equations
The model to be studied is sketched in figure 1. A layer −h1 6 z 6 0 of fluid

with viscosity µ1 and density ρ1 lies beneath another layer 0 6 z 6 rh1 with viscosity
µ2 ≡ γµ1 and density ρ2 = ρ1 + ∆ρ. Both bounding surfaces are traction-free and
impermeable. Because both boundary conditions are the same, one can assume r > 1
with no loss of generality. At time t = 0, the interface between the layers is perturbed
by an amount εh1f(x, y), and its position thereafter is z = h1η(x, y, t). The fluids are
assumed to be perfectly miscible (no surface tension), and to have negligible inertia
(creeping flow). Both of these assumptions are valid for flow within the Earth’s mantle
and crust.

Throughout this study, lengths are non-dimensionalized by h1, velocities by
∆ρgh2

1/µ1, time by µ1/∆ρgh1, and stresses by ∆ρgh1. All variables appearing in
the equations below are dimensionless.

The velocity within each fluid can be represented as

u = ∇× ∇× Φz + ∇×Ψz ≡ (Φxz +Ψy

)
x+

(
Φyz −Ψx

)
y − ∇2

hΦz, (2.1)

where Φ is the poloidal potential, Ψ is the toroidal potential, x, y, and z are unit
vectors, ∇2

h is the horizontal Laplacian, and subscripts denote partial differentiation.
The potentials satisfy the equations

∇4Φ = ∇2Ψ = 0 (2.2)

subject to the boundary conditions Φ = D2Φ = DΨ = 0 at z = −1 and z = r, where
D = ∂/∂z (or d/dz in what follows, depending on the context). Matching of velocity
and stress at the interface requires

〈u · n〉 = 〈u · t〉 = 〈t · σ · n〉 = 〈n · σ · n〉+ η = 0, (2.3)

where 〈 〉 denotes the jump in the enclosed quantity from fluid 1 to fluid 2 across the
interface z = η, σ is the non-hydrostatic stress tensor,

n =
(
1 + |∇hη|2)−1/2

(−∇hη + z) (2.4)
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is a unit vector normal to the interface,

t =
[
1 + (c · ∇hη)2

]−1/2
[c+ (c · ∇hη)z] (2.5)

is a unit vector parallel to the interface, c = cos θx + sin θy, and θ is the azimuth
of the horizontal part of t. Finally, the nature of the interface as a material surface
requires

∂η

∂t
+ u · ∇hη = w(η), (2.6)

where w(η) is the vertical velocity of the interface z = η. Following the example of
(2.6), I shall henceforth suppress the arguments x, y, and t for clarity.

3. Weakly nonlinear analysis
If the initial amplitude ε of the perturbed interface is small, the solutions for Φ, Ψ ,

and η have the forms

Φ = εΦ1 + ε2Φ2 + O(ε3), (3.1a)

Ψ = ε2Ψ2 + O(ε3), (3.1b)

η = εη1 + ε2η2 + O(ε3). (3.1c)

The matching conditions must be applied at a convected interface whose position
is not known in advance. Following a now-classic procedure, these conditions are
referred to the reference level z = 0 by expanding them in Taylor series. The power
series expansions for Φ, Ψ , η, n and t are then substituted into the governing equations
and matching conditions, and all terms proportional to each power of ε are gathered
together. The original nonlinear problem is thereby reduced to a set of linear (but
inhomogeneous) problems that can be solved in sequence. A similar analysis has been
applied to the inviscid RT instability by Jacobs & Catton (1988).

3.1. O(ε) problem

The O(ε) problem corresponds to a linear stability analysis (e.g. Canright & Morris
1993). The flow at this order is purely poloidal, and the solution has the form

Φ1 = φ(z, k)f(x, y) exp α(k)t, η1 = f(x, y) exp α(k)t, (3.2a , b)

where f is a planform function satisfying ∇2
hf = −k2f and α(k) is the growth rate of

an infinitesimal perturbation with wavenumber k. Explicit expressions for φ(z, k) and
α(k) are given in Appendix A.

Figure 2 shows α(k) for (a) r = ∞ (an infinitely deep upper layer) and (b) r = 1
(layers of equal depth), for several values of the viscosity contrast γ. When r = ∞, the
growth rate curves exhibit two limiting forms for small and large values of γ. The first,
the ‘hard-film’ limit r−5 � γ � k � 1, corresponds to long-wavelength instability of
a high-viscosity layer beneath an effectively infinite fluid with a much lower viscosity.
The growth rate curve has a broad and flat top, and the asymptotic expressions for α
and the most unstable wavenumber kmax are

α =
1

4

[
1− γ

2k
− k4

45

]
, kmax = 1

2
(180γ)1/5. (3.3a , b)

At the other extreme is the ‘soft-film’ limit r−1 � k � 1, γ � k−1, corresponding to a
low-viscosity layer beneath an effectively infinite fluid with a much higher viscosity.
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Figure 2. Growth rate α as a function of wavenumber k, for several values of the viscosity contrast
γ and for layer depth ratios (a) r = ∞ and (b) r = 1. When r = 1, curves for γ and 1/γ differ only
by a vertical shift because of the symmetry of the system.

The growth rate curve is now highly peaked, the asymptotic expressions for α and
kmax being

α =
k2

3 + 2k3γ
, kmax =

(
3

γ

)1/3

. (3.4a , b)

Similar limiting behaviours occur for r = 1 (figure 2b), except that the finite depth of
the upper layer strongly reduces the growth rate of the longest wavelengths. Figure
3 shows the most unstable wavenumber kmax as a function of r and γ. Canright &
Morris (1993) discuss the various limiting forms of α(k).

I suppose that the initial perturbations have a single horizontal wavenumber k and
one of three model planforms: rolls, squares, or hexagons. I denote the planform
functions for these planforms by Ri(q), Si(q), and Hi(q), respectively, where i is a
planform index and q is a dummy variable representing the horizontal wavenumber.
The planforms at order ε have i = 1 and q = k; additional planforms with i > 1 and
q > k appear at order ε2. The planforms for the O(ε) solutions are

R1(q) = cos qx, (3.5a)

S1(q) = 1
2
(cos qx+ cos qy), (3.5b)

H1(q) =
1

3

[
2 cos

√
3

2
qx cos

q

2
y + cos qy

]
. (3.5c)

In the roll and square planforms, maxima and minima have the same shape and
amplitude. For hexagons, however, H1 = 1 at the maxima (centres), and −1/2 at
minima (corners). Accordingly, there is a difference between ‘up-hexagons’ with a
positive amplitude ε > 0, and ‘down-hexagons’ with ε < 0.
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Figure 3. Most unstable wavenumber kmax as a function of viscosity contrast γ and depth ratio r.
Annotations on the contours are values of log10 kmax. Points above the dashed line on the left (slope
−1/5) correspond to the ‘hard-film’ limit kmax = (180γ)1/5/2, and points above the dashed line on

the right (slope 1/3) to the ‘soft-film’ limit kmax = (3/γ)1/3.

3.2. O(ε2) problem

Proceeding now to order ε2, one finds first that all the boundary and matching
conditions satisfied by the toroidal potential Ψ2 are homogeneous. This implies that
Ψ2 = 0, i.e. that the flow at order ε2 is purely poloidal. A toroidal component of flow
exists at order ε3 for the square and hexagonal planforms if the layers have different
viscosities (γ 6= 1), but determining it is beyond the scope of this study.

The poloidal scalar Φ2 satisfies ∇4Φ2 = 0, which must be solved subject to the
matching conditions 〈−∇2

hΦ2

〉
= 0, (3.6a)〈∇2

hDΦ2

〉
= −Λ1

k2
∇h · (f∇hf) exp 2α(k)t, (3.6b)

〈
ν∇2

h(D
2 − ∇2

h)Φ2

〉
=

2Λ2

k4

[
2k4f2 − 3k2|∇hf|2 + f2

xx + 2f2
xy + f2

yy

]
exp 2α(k)t, (3.6c)〈−νD(D2 + 3∇2

h)Φ2

〉
= −η2, (3.6d)

where

Λ1 = k2〈D2φ(0, k)〉, Λ2 = −k4〈νDφ(0, k)〉, (3.7a , b)

and ν is the dimensionless viscosity (= γ in the upper layer, 1.0 in the lower). Finally,
the O(ε2) part of the kinematic condition (2.6) is

∂η2

∂t
+ ∇2

hΦ2(0) = −Dφ(0, k)∇h · (f∇hf) exp 2α(k)t. (3.8)

The inhomogeneous terms in (3.6b), (3.6c), and (3.8) correspond respectively to the
three nonlinearities that drive the flow at order ε2: effective discontinuities in the
divergence of horizontal velocity and the divergence of the shear stress, and lateral
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self-advection of the interface. Only the last of these was considered by Daneš (1964)
and Whitehead & Luther (1975).

The form of the matching conditions suggests that Φ2 is a weighted sum of fun-
damental singular solutions with appropriate unit discontinuities at z = 0. Required
for this study are three singular solutions φ(z, q), ϕ(z, q), and χ(z, q), which repre-
sent the poloidal flows driven by discontinuities (with unit amplitude and horizontal
wavenumber q) in the normal stress, the divergence of the shear stress, and the diver-
gence of the horizontal velocity, respectively. The discontinuity in normal stress that
drives φ(z, q) is defined to be negative for consistency with the previous definition
of φ as the solution of the O(ε) problem. Explicit expressions for all three singular
solutions are given in Appendix A.

The use of the singular solutions is best explained by example. Consider the case
of rolls. Substitution of f = R1(k) into (3.6b) and (3.6c) yields〈∇2

hDΦ2

〉
= Λ1R1(2k) exp 2α(k)t, (3.9)

〈
ν∇2

h(D
2 − ∇2

h)Φ2

〉
= 6Λ2R1(2k) exp 2α(k)t. (3.10)

Evidently Φ2 is proportional to R1(2k), so that η2 = R1(2k)g(t), where g(t) is some
function of time. The normal stress matching condition (3.6d) then becomes〈−νD(D2 + 3∇2

h)Φ2

〉
= −R1(2k)g(t). (3.11)

The solution for Φ2 in each layer can now be expressed as a sum of three singular
solutions with wavenumber q = 2k, each being weighted by the right-hand side of
the corresponding matching condition:

Φ2 = R1(2k) {φ(z, 2k)g(t) + [6Λ2ϕ(z, 2k) + Λ1χ(z, 2k)] exp 2α(k)t} . (3.12)

The function g(t) is determined by substituting (3.12) into (3.8) and solving the
resulting differential equation subject to g(0) = 0. The solutions for squares and
hexagons proceed similarly, except that the nonlinear interactions now generate
additional horizontal modes with wavenumbers

√
2k (squares) and

√
3k (hexagons).

The results for all planforms can be expressed in terms of the quantity

Π(b) =
k2[b2Λ1χ(0, bk) + b2(b2 + 2)Λ2ϕ(0, bk) + Dφ(0, k)]

2α(k)− α(bk) . (3.13)

The three terms in the above expression correspond to the three nonlinearities iden-
tified earlier: effective jumps in the divergence of the horizontal velocity (first term)
and the divergence of the shear stress (second term), and lateral advection of the
interface (third term). However, the relative magnitudes of these three terms depend
on the values of γ and r. In the hard-film limit, for example, the lower fluid sees the
interface as traction-free, and the first term in (3.13) vanishes. In the soft-film limit,
by contrast, the lower fluid sees the interface as a no-slip surface, and the second and
third terms vanish. Asymptotic expressions for Π(b) in the hard- and soft-film limits
are given in Appendix B.

The solutions for η2 can now be written down for the three model planforms. For
rolls, the solution is

η2 = Π(2)R1(2k) [exp 2α(k)t− exp α(2k)t] . (3.14)
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For squares, the solution is

η2 =
Π(2)

2
S1(2k) [exp 2α(k)t− exp α(2k)t] +

Π(
√

2)

2
S2(
√

2k)[exp 2α(k)t− exp α(
√

2k)t],

(3.15)

where

S2(
√

2k) = cos kx cos ky. (3.16)

Finally, the solution for hexagons is

η2 =
Π(2)

3
H1(2k) [exp 2α(k)t− exp α(2k)t]

+
Π(
√

3)

2
H2(
√

3k)
[
exp 2α(k)t− exp α(

√
3k)t

]
+
Π(1)

6
H1(k) [exp 2α(k)t− exp α(k)t] , (3.17)

where

H2(
√

3k) =
1

3

[
2 cos

√
3k

2
x cos

3k

2
y + cos

√
3kx

]
. (3.18)

The solutions above are valid for arbitrary values of k, γ, and r, and can be adapted to
other boundary conditions at z = −1 and z = r by modifying the singular solutions
φ, ϕ, and χ accordingly.

4. Direction of spouting
If a perturbation of the interface is monochromatic and infinitesimal, its initial

growth is purely exponential. After a finite time, however, the growth of maxima (or
minima) becomes superexponential, and that of minima (or maxima), subexponential.
Following Whitehead & Luther (1975), I shall call the onset of superexponential
growth ‘spouting’, and the resulting structures ‘spouts’. Large-amplitude spouts are
seen e.g. in the laboratory experiments of Whitehead & Luther (1975) and the
numerical experiments of Newhouse & Pozrikidis (1990).

The direction of spouting (up or down) is controlled by the relative signs of η1

and ∂η2/∂t at interfacial extrema. If these quantities have the same sign, the growth
rate of the extremum in question will be enhanced, and a spout will form; otherwise
the extremum will flatten. The direction of spouting can therefore be determined by
evaluating the quantity

Γ =

[
1

α(k)

∂η2

∂t

]
t=0

(4.1)

at interfacial maxima and minima (the factor 1/α(k) serves merely to normalize the
time derivative). Because the minima and maxima of the roll and square planforms R1

and S1 have the same form, it suffices to evaluate Γ at a maximum, say (x, y) = (0, 0).
Let the resulting values be ΓR and ΓS , respectively. For hexagons, Γ must be
evaluated at two points: (x, y) = (0, 0) (a centre of a hexagon defined by H1)
and (x, y) = (2

√
3π/3k, 2π/3k) (a corner). Let the resulting values be Γ+

H and Γ−H ,
respectively.

Figure 4 shows ΓR , ΓS , Γ+
H and Γ−H , calculated assuming k = kmax(γ, r), as functions

of γ and r. Asymptotic expressions for these quantities in the hard- and soft-film limits
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Figure 4. Normalized O(ε2) growth rate Γ as a function of viscosity contrast γ and depth ratio r
for (from top to bottom) rolls, squares, centres of hexagons, and corners of hexagons. Values of Γ
are calculated assuming k = kmax(γ, r) (see figure 3).

are given in Appendix B. For all planforms, Γ > 0 in the left and upper parts of the
diagram, indicating that spouts of the lower fluid ascend from maxima. In the lower
right portion of the diagram, however, Γ < 0, indicating that spouts of the upper
fluid descend from minima. For rolls and squares, spouting at maxima (minima) is
accompanied by flattening of the minima (maxima). For hexagons, the origin of the
spouts depends on the sign of ε. If ε > 0 (up-hexagons), spouts ascend from the
centres when Γ+

H > 0 and descend from the corners when Γ−H < 0. If however ε < 0,
spouts descend from the centres when Γ+

H < 0 and ascend from the corners when
Γ−H > 0.

Figure 4 shows that there exists a critical value of the thickness ratio r = rc(γ)
at which the spouting direction changes. The physical reason for this is simple. The
lower and upper extremities of figure 4 show that (i) if the layers have equal thickness
(r = 1), the spouts penetrate the less viscous layer, and (ii) if one of the layers (i.e.
the upper) is infinitely thick, the spouts penetrate this layer regardless of the viscosity
contrast. Spouts thus tend to penetrate the layer that is less viscous and thicker.
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Figure 5. Normalized spout amplitude as a function of time in the (a) hard- and (b) soft-film
limits, for |ε| = 0.03. Dashed line represents the exponential growth of an infinitesimal (|ε| → 0)
perturbation. The four solid lines in each diagram are for (from top to bottom) hexagons with
central spouts, squares, rolls, and hexagons with corner spouts. In the hard-film limit, the two
uppermost curves (hexagons with central spouts and squares) are indistinguishable. In the soft-film
limit, the lowermost curve (hexagons with corner spouts) is barely distinguishable from purely
exponential growth.

When γ > 1, however, the more viscous layer is thicker, and the two tendencies are
opposed. Consequently there must exist a critical value of r = rc at which they balance
each other, and at which the spouting direction changes. The critical curves shown
in figure 4 substantiate and quantify the suggestion of Daneš (1964), Whitehead &
Luther (1975), and Fermigier et al. (1992) that the spouting direction is determined
by the relative ‘resistances’ of the layers.

The sensitivity of the spouting direction to changes in the relative thicknesses and
viscosities of the layers is measured by the slope m ≡ d ln r/d ln γ of the critical curve
r = rc(γ). For hexagons with central spouts (H+), for example, 0.230 6 m 6 0.286.
The results for the other planforms are similar. The smallness of the slope means that
the spouting direction is much more sensitive to the thicknesses of the layers than to
their viscosities.

Understanding the evolution of the instability for points (γ, r) on the critical curve
would require carrying the solution to order ε3, and is beyond the scope of this study.
However, one may anticipate that the maxima and minima of the perturbed interface
will initially evolve as mirror images of each other, with the same shape and growth
rate. This expectation is confirmed by finite-amplitude numerical solutions for rolls
(H. Schmeling, personal communication, 1998). However, no spouting occurs in these
solutions: the growth rates are everywhere subexponential after finite time.



Viscous Rayleigh–Taylor instability 37

(a) 0.02 0.01

0.
02

0.
01

0
0.

01
0.

02
0.

03
0.

02
0.

01

0

0.
01

0

0.01

0

0.
020.
030.

04

2.0

1.5

1.0

0.5

0

lo
g 1

0 
r

(b)
2.0

1.5

1.0

0.5

0

lo
g 1

0 
r

–5 –4 –3 –2 –1 0 1 2 3 4 5 6

log10 γ

0.05

0

0

0

0.0
5

0.
1

0.
15

0.15
0.1

0.1

0.0
5

0.05

0.
05

0.05 00

00

Figure 6. Planform selectivity indices (a) ΣHS = |Γ+
H | − |ΓS | and (b) ΣHR = |Γ+

H | − |ΓR | as
functions of γ and r.

5. Planform selection
The solution obtained above predicts the relative growth rates of the model plan-

forms as functions of γ and r. The end-member behaviours are illustrated by the
hard- and soft-film limits. Figure 5 shows the amplitude of the spouts in these limits
as a function of time, for |ε| = 0.03 and k = kmax(γ, r). The dashed lines represent
the purely exponential growth that obtains for |ε| → 0. In the hard-film limit (a), the
growth rate of all planforms quickly becomes superexponential. However, the growth
rates for rolls, squares, and up-hexagons (spouts ascending from centres), are nearly
indistinguishable from one another. Moreover, the growth of down-hexagons (spouts
ascending from corners) is much slower than that of the other planforms. In the soft-
film limit (b), by contrast, the growth remains exponential longer than in the hard-film
limit, but the eventual departures from this differ significantly among planforms. The
curve for down-hexagons is nearly indistinguishable from purely exponential growth.

The order of planform preference shown in figure 5 for r = ∞ generally obtains
for finite r also. Figure 6 shows ‘planform selectivity indices’ ΣHS = |Γ+

H | − |ΓS | and
ΣHR = |Γ+

H | − |ΓR| as functions of γ and r. These indices measure the nonlinear
amplification of hexagons with central spouts relative to that of squares and rolls,
respectively. The analogous index for hexagons with corner spouts was not calculated
because the growth of this planform is too slow to be of interest. Figure 5 shows that
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Figure 7. Half-bandwidth B = (k+ − kmax)/kmax as a function of γ and r. Wavenumber k+ > kmax is
that whose growth rate is one half the maximum value α(kmax).

hexagons with central spouts are (slightly) preferred to squares, and both of these
planforms preferred to rolls, for nearly all values of γ and r, except just to the left of
the line γ = 1. The slightly negative values of ΣHR and ΣHS between the zero contours
for γ > 1 are not meaningful because the neglected O(ε3) solution becomes important
when r ≈ rc.

Figure 5 suggests that there is an inverse relationship between nonlinear ampli-
fication of the growth rate and planform selectivity. This can be explained to first
order by the shape of the peak of the growth rate curve α(k) predicted by the linear
theory (Biot 1961; Johnson & Fletcher 1994). When the peak is broad and flat,
the harmonics generated by the nonlinear interactions have nearly the same (linear)
growth rate as the fundamental mode, so amplification is high. But because the growth
rates of all harmonics are nearly equal, no planform is strongly preferred. When the
peak of the growth rate curve is sharp, by contrast, the opposite situation obtains:
nonlinear amplification is low, but planform selectivity is high. Biot (1961) measured
the selectivity in terms of the ‘relative bandwidth’ (k+−k−)/kmax, where k+ > kmax and
k− < kmax are the wavenumbers whose growth rates are one half the maximum value
α(kmax). Because only wavenumbers k > kmax appear in the problem studied here, I
use instead the half-bandwidth

B =
(k+ − kmax)

kmax
, (5.1)

which is shown as a function of γ and r in figure 7. Comparison of figure 7 with
figure 6 shows that smaller bandwidths generally correspond to higher selectivity,
as expected. The planform selectivity is relatively strong when γ > 10 and r > γ1/3,
and reaches its maximum (ΣHS = 0.181, ΣHR = 0.043) in the soft-film limit, where
B = 1.94.

The planform ‘pecking order’ found above (hexagons with central spouts, squares,
rolls, hexagons with corner spouts) is identical to that found by Fermigier et al.
(1992) for the RT instability of a thin viscous film exposed to air. The behaviour
of that system is dominated by surface tension, which limits the instability to long
wavelengths. Such a system has a half-bandwidth B = 0.307, and is therefore more
selective than the one studied here.
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Figure 8. Distribution of salt domes in (a) the Zagros Mountains of Iran (from Jackson et al.
1990) and (b) the Zechstein Basin of Germany (from Trusheim 1960, reprinted by permission of
the American Association of Petroleum Geologists).

6. Application to salt tectonics
Salt domes are buoyant structures that form when salt deposited in a sedimentary

basin or shallow sea rises through a subsequently deposited layer of sediment. Salt
domes typically occur in families of several tens or hundreds; well-known examples
are found in the Gulf Coast of the United States, the Zechstein basin in northern
Germany, and the Great Kavir desert in central Iran. A global survey of salt dome
fields can be found in Jackson, Roberts & Snelson (1995).

Understanding the formation of salt domes is important for several reasons. First, a
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(γ, r) consistent with the observed spacing L of salt domes in the Zagros Mountains (circles) and
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curve shown is for a rigid surface beneath the salt layer.

large fraction of the world’s hydrocarbon reserves is associated with such structures,
which readily trap rising oil and gas due to their low permeability. For the same
reason, salt domes are prime candidates for storage of radioactive waste; choosing
suitable domes for this purpose requires a detailed understanding of their structure
(Jackson & Talbot 1989). More fundamentally, salt domes are a striking example of
large-scale natural pattern formation. Figure 8 shows the geographical distribution
of salt domes in the Zechstein basin and in the Zagros Mountains of southern Iran.
Particularly noteworthy is the transition in the Zechstein basin from a roughly two-
dimensional pattern (‘salt walls’) in the northwest to a three-dimensional pattern in
the southeast.

The classic model for salt domes is that of a RT instability that occurs when the
sediments become denser than the underlying salt due to progressive compaction
(Nettleton 1934; Daneš 1964; Selig 1965). This model is of course applicable only
if the sediments can reasonably be assumed to behave fluidly (Weijermars, Jackson
& Vendeville 1993); this is most likely when they contain substantial quantities of
distributed evaporites, as in the Great Kavir and Zagros Mountain regions of Iran
(Jackson et al. 1990). The traditional application of the model is to use the linear
theory to determine the sediment/salt viscosity contrast for which the observed dome
spacing L corresponds to the fastest growing wavelength, given estimates of the initial
layer thicknesses h1 and h2 = rh1 (Rönnlund 1989; Jackson et al. 1990). It is of
interest to determine where the resulting points (γ, r) lie relative to the critical curve
r = rc(γ) that controls the direction of spouting. Consider first the case of the Zagros
Mountains, where L = 28 km, h2 = 5 km, and 1 km 6 h1 6 3 km (Jackson et al.
1990). Figure 9 shows the values (γ, r) predicted by the linear theory for h1 =1 km and
3 km (circles), together with the critical curve r = rc(γ) for hexagons. The points (γ, r)
and the critical curve were calculated after replacing the free-slip boundary condition
at the bottom of the salt layer by a more geologically realistic rigid surface condition.
Because the top and bottom boundary conditions are now different, the critical curve
no longer passes through (γ, r) ≡ (1, 1). The predicted points (γ, r) lie below the critical
curve, indicating that the direction of spouting is downward, i.e. into the salt layer. A



Viscous Rayleigh–Taylor instability 41

similar result is found for the Zechstein basin. Rönnlund (1989) applied the linearized
RT model to a portion of the basin west of Bremen, where 900 m 6 h1 6 1100 m,
400 m 6 h2 6 500 m, and 8 km 6 L 6 12 km (Jaritz 1973). The predicted values
of (γ, r) that correspond to these estimates (triangles in figure 9) are again below the
critical curve, indicating that spouting is downward. Physically, this means that the
portion of the salt layer beneath the spout drains rapidly (i.e. superexponentially)
into the rest of the layer, which itself thickens subexponentially and eventually forms
a salt dome. This behaviour is confirmed by finite-amplitude numerical solutions (H.
Schmeling, personal communication, 1998).

The nonlinear theory presented here also provides some insight into the origin of
the planforms of figure 8. Figure 6 shows that when (γ, r) lies below the critical curve,
hexagons and squares have nearly the same growth rate and both grow substantially
faster than rolls. The same result obtains with only slight qualitative differences when
the bottom boundary is rigid, as assumed in this section. One would therefore expect
the preferred planform to be an irregular polygonal pattern, as observed for most
of the Zechstein and Zagros regions. This expectation is confirmed by laboratory
experiments, in which the planform is dominated by an irregular ‘spoke’ pattern
and rolls are confined to within two wavelengths of sidewalls (Talbot et al. 1991).
However, the roll-like ‘salt walls’ in the Zechstein basin probably reflect the influence
of crustal faults, which are observed to trend in the same direction (Nalpas & Brun
1993). This implies that the distribution of the salt in this part of the basin may be
controlled by large-scale extension of a brittle (rather than fluid) crust. Applications
of the RT model to the Zechstein basin should therefore be interpreted with caution.

7. Summary and conclusions
(i) I have examined the weakly nonlinear evolution of the Rayleigh–Taylor (RT) in-

stability of two superposed layers of viscous fluid between impermeable and traction-
free planes in a field of gravity. I obtain analytical solutions valid to second order
in the small amplitude of the initial perturbation of the interface, which consists of
either rolls or squares or hexagons with a horizontal wavenumber k. The solutions are
valid for arbitrary values of k, the viscosity ratio (upper/lower) γ, and the depth ratio
r. For simplicity, however, I assume k = kmax(γ, r), where kmax is the most unstable
wavenumber.

(ii) The flow is purely poloidal to order ε2. However, a toroidal component with
non-zero vertical vorticity enters at order ε3 for the square and hexagonal planforms
if the fluids have different viscosities (γ 6= 1).

(iii) The flow at order ε2 is driven by three distinct nonlinearities: effective jumps
at z = 0 in (a) the divergence of the horizontal velocity and (b) the divergence of the
shear stress, and (c) lateral self-advection of the interface. The relative importance
of these three mechanisms varies as a function of γ and r. In the ‘hard-film’ limit of
a thin high-viscosity layer beneath a deep low-viscosity fluid, only mechanisms (b)
and (c) operate. In the ‘soft-film’ limit of a thin low-viscosity layer beneath a deep
high-viscosity fluid, only mechanism (a) operates.

(iv) For all planforms, the direction of spouting (superexponential growth of inter-
facial extrema) is determined by the balance between tendencies to penetrate the less
viscous and the thicker layer. When these tendencies are opposed (i.e. when γ > 1
for r > 1), the spouts change direction at a critical value of r = rc(γ). The small
slope (d ln r/d ln γ < 0.36) of the critical curve implies that the direction of spouting
is much more sensitive to the thicknesses of the layers than to their viscosities.
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(v) For nearly all values of γ and r, the most rapidly growing planforms are (in
descending order) hexagons with central spouts, squares, rolls, and hexagons with
corner spouts. However, squares grow almost as fast as hexagons with central spouts,
and hexagons with corner spouts grow much more slowly than the other three
planforms.

(vi) The instability exhibits an inverse relationship between nonlinear growth rate
amplification and planform selectivity. The selectivity is inversely proportional to the
bandwidth of the growth rate curve for infinitesimal perturbations, and is highest
when γ > 10 and r > γ1/3.

(vii) A classic geological application of the RT model is to the formation of salt
domes in the Earth’s crust. The traditional procedure is to use the linear theory to
determine the sediment/salt viscosity contrast for which the observed dome spacing
corresponds to the fastest growing wavelength, given estimates of the initial layer
thicknesses. For salt domes in Germany and Iran, the resulting estimates (γ, r) lie
below the critical curve r = rc(γ), indicating that the domes developed from interfacial
extrema that grew subexponentially. The dominantly polygonal planform of these
domes is consistent with the model prediction that hexagons and squares have nearly
the same growth rate and that both grow faster than rolls.
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Appendix A. Singular solutions
This Appendix gives explicit expressions for the three singular solutions φ(z, q),

ϕ(z, q), and χ(z, q). Each (generic name G(z, q)) satisfies the equation (D2− q2)2G = 0
and the boundary conditions G(r, q) = G(−1, q) = D2G(r, q) = D2G(−1, q) = 0. The
matching conditions they satisfy are

〈φ〉 =
〈−q2Dφ

〉
=
〈−νq2(D2 + q2)φ

〉
=
〈−νD(D2 − 3q2)φ

〉
+ 1 = 0, (A 1a)

〈ϕ〉 =
〈−q2Dϕ

〉
=
〈−νq2(D2 + q2)ϕ

〉− 1 =
〈−νD(D2 − 3q2)ϕ

〉
= 0, (A 1b)

〈χ〉 =
〈−q2Dχ

〉− 1 =
〈−νq2(D2 + q2)χ

〉
=
〈−νD(D2 − 3q2)χ

〉
= 0. (A 1c)

In the following formulae, q is a dummy variable representing the horizontal
wavenumber, p = 2q, P = 2qr, s = sinh p, S = sinhP , c = cosh p, C = coshP ,
n (= 1 or 2) is the layer index, d1 = −1, and d2 = r:

∆ = (S − P )(s+ p) + 2γ(Cc− 1 + Pp) + γ2(S + P )(s− p), (A 2)

α =
(S − P )(c− 1) + γ(s− p)(C − 1)

p∆
, (A 3)

φn = An sinh q(z − dn) + Bnq(z − dn) cosh q(z − dn), (A 4)
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A1 =
1

2q3∆
{[2(S − P ) + γp(C − 1)] sinh q

+[p(S − P ) + γ(pP + 2(C − 1))] cosh q} (A 5a)

A2 =
−1

2q3∆
{[2γ(s− p) + P (c− 1)] sinh qr,

+[γP (s− p) + Pp+ 2(c− 1)] cosh qr} , (A 5b)

B1 =
−1

q3∆
{(S − P + γP ) sinh q + γ(C − 1) cosh q} , (A 5c)

B2 =
1

q3∆
{[γ(s− p) + p] sinh qr + (c− 1) cosh qr} , (A 5d)

ϕn = Cn sinh q(z − dn) + Dnq(z − dn) cosh q(z − dn), (A 6)

C1 =
−1

q3∆
{[S + P (γ − 1)] sinh q + γ(C + 1 + 2r) cosh q} , (A 7a)

C2 =
−1

q3∆
{r[γ(s− p) + p] sinh qr + [r(c+ 1) + 2] cosh qr} , (A 7b)

D1 =
1

q4∆
{γ(C + 1) sinh q + [S + P (γ − 1)] cosh q} , (A 7c)

D2 =
1

q4∆
{(c+ 1) sinh qr + [γ(s− p) + p] cosh qr} , (A 7d)

χn = Jn sinh q(z − dn) +Knq(z − dn) cosh q(z − dn), (A 8)

J1 =
−2γ

q2∆
{(C − 1− 2r) sinh q + [γ(S + P )− P ] cosh q} , (A 9a)

J2 =
2

q2∆
{γ[r(c− 1)− 2] sinh qr + r[s+ p(1− γ)] cosh qr} , (A 9b)

K1 =
2γ

q3∆
{[γ(S + P )− P ] sinh q + (C − 1) cosh q} , (A 9c)

K2 =
−2

q3∆
{[s+ p(1− γ)] sinh qr + γ(c− 1) cosh qr} . (A 9d)

Appendix B. Asymptotic expressions
All the expressions below are calculated assuming k = kmax, where kmax is given by

(3.3b) (hard-film limit) or (3.4b) (soft-film limit). In the hard-film limit,

Π(b) ∼ 5

4
+

1

2b2
, (B 1)

ΓR ∼ 11

8
≈ 1.38, ΓS ∼ 23

16
≈ 1.44, (B 2a,b)

Γ+
H ∼ 35

24
≈ 1.46, Γ−H ∼ 1

3
≈ 0.33. (B 2c,d )
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In the soft-film limit,

Π(b) ∼ 3

4b3 − 3b2 + 2
, (B 3)

ΓR ∼ 3

17
≈ 0.176, ΓS ∼ 21 + 102

√
2

527
≈ 0.314, (B 4a,b)

Γ+
H ∼ 1154 + 459

√
3

5457
≈ 0.357, Γ−H ∼ −2767 + 1836

√
3

21828
≈ 0.019. (B 4c,d )
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